Asymptotics of polynomials and eigenfunctions

نویسنده

  • S. Zelditch
چکیده

We review some recent results on asymptotic properties of polynomials of large degree, of general holomorphic sections of high powers of positive line bundles over Kähler manifolds, and of Laplace eigenfunctions of large eigenvalue on compact Riemannian manifolds. We describe statistical patterns in the zeros, critical points and Lp norms of random polynomials and holomorphic sections, and the influence of the Newton polytope on these patterns. For eigenfunctions, we discuss Lp norms and mass concentration of individual eigenfunctions and their relation to dynamics of the geodesic flow. 2000 Mathematics Subject Classification: 35P20, 30C15, 32A25, 58J40, 60D05, 81S10, 14M25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-exactly solvable quartic: elementary integrals and asymptotics

We study elementary eigenfunctions y = peh of operators L(y) = y+Py, where p, h and P are polynomials in one variable. For the case when h is an odd cubic polynomial, we found an interesting identity which is used to describe the spectral locus. We also establish some asymptotic properties of the QES spectral locus. MSC: 81Q05, 34M60, 34A05.

متن کامل

Distribution Laws for Integrable Eigenfunctions

We determine the asymptotics of the joint eigenfunctions of the torus action on a toric Kähler variety. Such varieties are models of completely integrable systems in complex geometry. We first determine the pointwise asymptotics of the eigenfunctions, which show that they behave like Gaussians centered at the corresponding classical torus. We then show that there is a universal Gaussian scaling...

متن کامل

A Class of Exactly-Solvable Eigenvalue Problems

The class of differential-equation eigenvalue problems −y′′(x)+x2N+2y(x) = xNEy(x) (N = −1, 0, 1, 2, 3, . . .) on the interval −∞ < x < ∞ can be solved in closed form for all the eigenvalues E and the corresponding eigenfunctions y(x). The eigenvalues are all integers and the eigenfunctions are all confluent hypergeometric functions. The eigenfunctions can be rewritten as products of polynomial...

متن کامل

Singular perturbations of curved boundaries in dimension three. The spectrum of the Neumann Laplacian

We calculate the main asymptotic terms for eigenvalues, both simple and multiple, and eigenfunctions of the Neumann Laplacian in a three-dimensional domain Ω(h) perturbed by a small (with diameter O(h)) Lipschitz cavern ωh in a smooth boundary ∂Ω = ∂Ω(0). The case of the hole ωh inside the domain but very close to the boundary ∂Ω is under consideration as well. It is proven that the main correc...

متن کامل

Asymptotics at irregular singular points

• Introduction 1. Example: rotationally symmetric eigenfunctions on R 2. Example: translation-equivariant eigenfunctions on H 3. Beginning of construction of solutions 4. K(x, t) is bounded 5. End of construction of solutions 6. Asymptotics of solutions 7. Appendix: asymptotic expansions • Bibliography According to [Erdélyi 1956], Thomé [1] found that differential equations with finite rank irr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002